
AD—AO &e 79~4 CARNEGIE—MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ——ETC F/G 9/2
ERROR RECOVERY IN CAPABILETY SYSTEMS.(U)
JUN 78 W A WULF. D LANC IAUX F’e’+620—73—C—0074

UNCLASSIFIED CMU CS—78—127 AFOSR— TR— 79—OO6j NL

END
D A T E

4 79

_ _ _ _ • A

-
~~~~~

—
~~~~~~~~~~ _ _ _

CMU-CS-78-127

Error recovery in capability systems

Didier Lanciaux (1)

William A. Wult

Oepartment of Computer Science
Carnegie Mellon University

June 1978 D D C

Abstract: Methodologies and checking techniques have been proposed to improve
sofware reliability. It has also been argued that capability mechanisms are the natural
suppor t for these techniques because they enhance modular decomposi tion and
information hiding.
However , ther e is a conflict between these observations; modular decomposition limits
the possible rec overy actions to the information that a module can access directly.
Each module must rely upon the reliabili ty of those that it uses.
This paper presents a mechanism which allows recovery to be managed at any level in
the sys tem while satisfy ing the information hiding principle. It is based on a save-
restore mechanism. In addition, primitives to define consistent states in the system are
provided by the Kernel.

I. .

(1): IRIA-Laborla, Domaine de Voluceau, 78150 Le Chesnay, France.

This work was supported by the Advanced Research Projects Agency of the
Department of Defense under contract F44620-73-C-0074 (which is inonitered by the •
Air Force Office of Scientific Research).

I DTSTRIBUTION 8TATEMENT A 1
fcs~ puiIie rs1 c~~j

~~‘ OIe~tb~~c. UDltXth%Sd ~~j

_ _ _ _ _ _ _ _ _ _ _ _ ‘1 .:~.
_ _ _ _ _

_________________ — — ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

____ —~~~~

1. Introduction.

2. The Object Model. 4

3. Introduction to the mechanism. 7

3.1. Vertical consistency. 7
3.2. Horizontal Consistency. 8
3.3. Introduction to the mechanism. 8

4. Vertical Consistency. 10

5. Horizontal Consistency. 14

6. Implementation. 17

7. Conclusion.
.

21

8. References. 22,

ACCE5 S~~
4 r P

NTIS
on D

- 0

Ti CODES
~~~~~~~~~~~~~~~~ _ _



~~~~~~~~~~~ 
-

1. Introduction.
Approaches to producing reliable sofware generally propose that programs be~

designed so as to be small, simple, and understandable. These approaches rel~’ Upon

information hiding such as suggested by modular decomposition [Pa72] or data

abstraction (1Z74]. Inlerdependencies among program fragments are thereby minimized

• and accessible data s reduced to a minimum. Thus, sof tware faults should be more

easily avoided and errors should be confined. Yet, hardware failures can occur which

circumvent ccntrols performed at compile time and error recovery is needed.

Error recovery requires: 1) that failures be detected, and 2) that the damage they

may cause be limited as much as possible. Then, if possible, failures should be made

transparent to higher levels of the system.

Capability-based systems have been shown to be a dynamic support to the above

programming principles and to m*tet the recovery requirements (Li76, De76),

par ticularity when type extension is el~ployed. An extended-type object is an instance

of a new type Implemented by a module In terms of previously defined types. An

object of a given t ype can only be operated by the appropriate type module;

• conversely, a module can only operah~ on objects it receives as parameters. Thus, the

capabi lity mechanism helps to enforce modularity and localize detection. Furthermore,

since modules are independent arid protected from each other , the possible damage

that failures can cause is inherently limited.

• Recovery requirements can be enforced by use of appropriate programming

disciplin. (Wu75) and techniques (Po78). Each module Is responsible for the integrit y

of the abstrac t concept it implements. As a module s•es only a modul. above (its

-
~~
__

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~-—--~--
.•.~~-- :-~~ 

•



- 

_ _ _ _ _ _ _ _ _ _ _ _  ____________ 

- .

caller> and possibly the modules below (its calIco’s), its reliability requirements are

c learly defined. Parameter checking protects a module from misuse by Its caller.

Additional consistency tests are performed by the module on the objetts it is

responsible for. They are intended to detect possible latent failures as well as to

ver ify that functions performed according to their specifications. If such checks failed,

either the responsibility of repairing the erroneous Information Is taken by the module,

or the concerned object is returned to a consistent state and the failure is reported to

the levels above (in terms of the abstraction implemented by the module). Thus, a

module must also be ready to handle reported errors from lower levels.

Detection as well as recovery rely upon either temporal or spatial redundancy.

Checking that a function performed according to its specifications will require, for

inst ance, that this function be partly performed again. On the other hand, Internal

consistency checks require the presence of redundant Information against which tests

can be performed. Both forms of redundancy are likely to be used together. Spatial

redundancy can be provided in either of two ways:

At the w~odute level: When a module Is activated on one of Its functions,
values of the objects it operates on may be saved so that returning them
to a consistent state consists merely of res toring these values. The
recursive cache provides such redundancy (Ra751 When the acceptance

• test falls the previous consistent state is retrieved and either the
operation can be corrected or an error can be raised tQ a higher level.

At the object level: Mainly, redundancy is provided at this level in order
• to perform consistency checks on the object structure and to detect latent

err ors. For instance, double links in a list structure can provide for its
repair.

The higher levels in the system generally provide less redundancy1 since a loss

there is often less vital to the system. This trade off is a m.ttsr for the

ImplementatIon of the abstraction and does not necessarily reflects the Importance that

a user may attach to a given object.

I. 

_ _  

_ _ _ _  _ _

_ _ _ _

_ _ _  

I. ... ~~~~ - •—--•--— -- -—- ___________________ :: -~~~~~~~~ - -
~~~~~

________________________ —
~~~~~~J• 

. - . — - .

This method is not wholly satisfatory. Object consistency relies on the

implementation of the abstraction, and no control is left to its user. A user may be

concerned with a sequence of operations on an object , and its consistency may be

related to that whole sequence. Should an error be detected, the recovery action

performed by the user may then require that the object be returned to the slate it

held before the sequence took place. Such recovery would require one to undo the

sequence of operations. Even though the operations defined on a type may include

their inverses, undoing the sequence requires recording the operations and the

definition of a (possibly complicated) inverse sequence.. This is likely to be source of

new errors and may even be contradictory with other reliability requirements (e.g.,it

may require rights on the object which otherwise would be denied). Moreover, a

system crash during a sequence of operations can leave the objects inconsistent. This

would be irrepairable since no record of the consistent stale of these object has been

kept. These remarks suggest that a global, user controlled approach is necessary. 
•

!

•

3

I ~~~~~~~~~~~ ~
--

~~
•
~~

- 

_ 
-

~~~~~~


I

2. The Object Model.

We noticed in section 1 that objects of extended-types are possibly formed of

objects of other previously defined types. Hence, the overal l structure of an object

may describe a complicated gr aph when all components are considered. Moreover, this

graph may evolve during the life of the object. Some objects may have their structure

completely defined at their crea tion-time while other objects may add or remove

components during their life time. 9mponents may also be eventually shared among

objects. According to the dat a abstra(ction principle, the structure of an object and its

evolution are unknown at the level wtLre It is used. As the evolution will probably be

different for objects of the same type, it is not clear what copying an object means

nor how to perform it. A model of object composition is required. We will consider

two cases: the graph model and the component model.

In the graph model, each component of the object structure is a reference to an

independent object and all are of equal significance. Copying, resloring or saving such

an object is easy and concerns only the first level of the composition. Such a

structure is exemplified by directoriesa (Figure 2). A ‘directory is an associative

mechanism, mapping string names to object reierences. It is implemented as a

capability-list which holds capabilities for objects, or !0t other directories which can

be accessed independently or through other structures. The structure of the objects

that the directory holds is of no concern; these objects are maintained at other levels

of the system. Therefore copying a directory consists of only copying the capability-

list.

In the component model, the representation of an object also holds the

representation of Its components; however,lhs components are an integral par t of the

4

_________ ~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~ ——— ~~~~~~~~~~~~~~
—

~~~~~~~~~~:



- A.i - ~~~~~~~~~~~~~~~~~~~~~~~~

object. An example of such a structure is a file (Figure 2). A file can be formed of a

semaphore (used to implement the open-close operations) and a segment which

contains the actual contents of the file. The semaphore and the segment a not

independent entities; they are part of the representation of the file. Therefore ,

• 

. 
copying such an object also requires copying the representation of its components.

Directory

Figure 1: The graph model.

These two examples represent ex tremes of possible object structures. One is a

pure graph model; the other is a pure component model. Even if examples can be

found of these two basic models, realj structures may make use of bot h of them at the

same time. For instance, a semaphcire may be viewed as holding a component, its

value, and a reference to the first ele~ient of a process list. The processes on this list

• are not components of the semaphore. Furthermore, this structure evolves during the

life of the object. Fortunately, the na~ure of this evolution is completely known by the

5

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ±.~~~ ~~—
—-—

~~~- - ~~~~~~~~~ 
—~~ --—----—~~~~~~~.~~~~~~~~~ -.



~~~~~~~~~~~~ph~~~~~~~~~~egment .

Figure 2: The component model.

operation which directs it. Thus the complete description of whether a given

component is a true component or a mere reference to an object can be kept at the

level of the object , and maintained by the operations defined on its type.

One more remark is in order. Whe ther the structure of an object is related to the

graph model or the component model may change according to the semantics of the

operation. Considering the file example again, it will be viewed by the file operations

as matching the component model. However , the saving of the file will probably not

involve the saving of the semaphore which therefore will no longer be considered a s a

irue” component.

Here we will consider components of a structure with regard to the saving of the

state of an object. It Is now clear that such operations are completely defined by the

type of objects since the type operations are able to maintain a description of their

structure. •

.

6

- •~~~~~~~ —T~~~~~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
- -

•~~~~~~~~~~~ -—~~~~--~~~~~~ ~~~~~~~~~~~~~~~ 



3. Introduction to the mechanism.

So far we have considered local consistency at each level of abstraction. The

introduction asserted the need for global consistency as well. We will distinguish

between “ver tical consist ency ” and lo z o n t  al consistency ”. Roughly, vert ical

consis tency refers to the sequential use of objects , and horizontal consistency refers

to preserving some invariant relation t etween a set of objects.

• 3.1. Vertical consistency.

We previously noticed that the consistency of a sequence of operations should be

considered. For local consistency it was possible to define a consistent state before

an opera tion took place , and so it is also possible to consider the consistent state

which existed before a sequence was performed. Recovery cons ists of restoring this

state.

Since objects can be composed of several levels , the consistency of an object relies

on the consistency of its components down to the primitive levels. Hence, the

res toring of an object implies restoring all these components.

A t the level where we consider it , the implementat ion of objects is hidden. The

prograrr t herefore requires the assistance of a mechanism to define and save

consistent states. To preserve “information hiding”, this mechanism should keep the

implementation of objects hidden, and should not require knowledge of the type of the

object to be saved, It should be kept as independent of the object Itself as possible,

and possibly be provided by the kernel.

7

_______ 
•— —

~~~~~•~~ 
...

-- —
~~~~~~

-
~~

--- 
~~~~~~~~

— --
~~~~~~~~~~~~~~~~ :_~~~~~~~~~~~~~:~~ ~~~ _~~•



_ _—  — - —---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

3.2. Horizontal Consistency.

A simple example will suffice to define horizontal consistency. Consider a data base

which holds the status of the checking accounts in a bank. The following transaction

records a transfer of 100 dollars from account A to account 8:

read A ;

A~ - A - 1 a O i

write A;

B . ’ B +l Be ;

w r i t e  8;

The data base must be kept globally ~onsiste nt; here this means that A+B must be the

same bef ore and after the transact ioh takes place. Suppose a failure occurs after A

has been modified and that this failure requires B to be restored. B canno t be

restored alone since A was already modified and the above requirement on A+B would

no longer hold.

3.3. Introduction to the mechanism.

Global consistency requires ties between objects to be defined. However , in the

case of horizontal consistency program assistance is needed. One may notice that this

same problem occurs when the internal structure of an object is considered. At each

level of the composition components are tied by the same sort of consistency relation.

To allow these relationships to be expressed , we introduce the concept of

______— —,——-.-—- ---.-— ~~~~~~~~
--- ——- — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—--- -
~~~



I
I

consistency-sets. Providing that a is a set formed of A and B, the transaction of our

~xampIe would be written:

• enter a;

transaction body;

~~jj, a;

A consistency-set is an object whose type is imp lemen ted by the kernel. The

purpose of c onsistency-sets is to define the scope of recovery actions and the set of

objec ts that are involved. Hence, acces s to these objects needs not be restricted.

Once a set has been entered , its objects are accessed freely by normal use of

• capabilities.

Operations defined on this type are: enters 
~~~, ~!

jj, restore. The enter and in

operations are performed in order to declare the current state of objects in the set to

be consistent wi th regard to the program. It tri ggers the saving of these objects.

Hence, in our example , A and B would be considered together and therefore kept

consistent with each other instead of being considered separatel y. The purpose of the

~~jj operation is to mark the end of the use of the set. It tells also that the obiects in

the set are consistent again with regard to the transaction. Therefore , the restore

operation, which allows a set to be returned to the (consistent) state prior to the

eni~ej,~ can only be performed if the set has not yet been exited. In order to allow the

identif ication of objects’ versions and the restoring of a set, both set and object

• versions are stamped with the current clock time when sets are entered.

9

• —.-
~~~~•

-
~~~~~~~~~~~~~~~~~~~~~~~~ _________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-


—•--- • • •- - -• • . — - ~~ —~~-- ——- -- - — ---~~---~~- ---- • -—
~~~~~~~~~

-

• 4. Vertical Consistency.

Consistency-sets are intended to mark the consistent stale of a collection of objects

before an action fakes place. This action wiH probably be expressed In terms of more

elementary actions that are imp lemented by functions defined in lower level modules.

Recovery requirements of these modules may lead to the declaration of consistency-

sets which may intersect with those previously entered.

For instance, consider our previous data base example. For the purpose of

recovery, the user declared the checking accounts A and B in the set a. Imagine now

that the user catted the data base manager in order to perform an operation on the

checking account A. In order to manage its own recovery actions, the data base

• manager probably declares a new set b which includes A. As far -as the data base

manager is concerned, the state of A before it was called is consistent. If a recovery

action is to be performed , this state must be restored. Consequently, when the new

• set & is entered, the state of A must be saved.

• Now consider the transaction: when it receives control from the data base manager,

the current state of A must be the state it held when the set b was exited. The same

requirements app ly to any consistency-sets that are entered sequentiall y. Therefore

when an enter operation is performed on a set which intersects with a set that the

same pr ocess already entered, new current versions are provided for any object of

this set , w hether current versions already exist or not. The purpose of the enter

operation is to define a new “current” version. Consequently, between the enter and

the ex it of a set, several versions may have been stacked for some of its components.

However , the res tore operation requires the retrievial of the version of each object of

• the set fr om which the current version was originally created. In order to make these

• 10

• • :~~•~ :r: —~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - - • — 4



versions identifiable, s&s are stamped with the current clock time when they are

• entered. When a new version is created for an qbject , this version is stamped in the

same way. Hence, w hen restoring a set is required, the correct version of its objects

can be found by matching the time stamp that the set holds with the time stamp of the

differen t versions of its objects. The correct version of an ol,ject is the version which

holds the time s tamp whose value is the closest but smaller than the time stamp of the

set . Figure 3 shows this process.

As the enter operation declares th~2 current version of its objects to be consistent

wi th regard to the coming transaction, so the exit operation declares the versions

created for the purpose of this transactio n to be consistent again. But once a set has

been exited, new versions may be crea ted throug h the same process for some of the

objects it holds, so that the consisten t state that it refers to would be lost. Therefore ,

when sets are exited, they are stamped with t he current clock value. The versions of

• objects that such a set refers to are those whose stamps are the closest but smaller -

than ifs own sf amp. However , more recen t versions can be referred to in other sets

and define a consisten t state. The restoring of old versions would destroy these

consis tent states. Therefore , once a se t is exited, the restore operation can no longer

be performed. Instead new objects whose representations are copies of the referred

versions can eventually be provided.

As a result of the ex it operation, when intersecting sets are acted on sequentially,

• the use of objects contained in the embedding sets destroys the consistent state

• ref fered to by Inner sets. Figure 3.2 illustraies this remark , where the versions exi ted

• by the set $2 become the current versions of the set $1. It now objects of the set SI

are accessed, the state that set S2 refers to is no longer consistent with regard to the

11

H _ 
.

______ • - - -~~~~~~~~~ - •~~ - •- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



•~
• • •

~
---— _ _i_•_

~~
_ • •• _

.~
•__ _ • • ___ • •

~
___ •

~
_ 

~~~

•-—-

~~~~

•-•

~~~~~~

—

Object A
•

• Object B
Set Si ~~~~~~~~~~~~~~~~~~~~~~~ Object C

•
‘
~~~~~~~~ ‘ - .. Object D

I t.A~t.Si r—

~-----—~—--. : — —

Set S2 

~~~~~ [ r J.. .~~
Current t.B~t.S2 ~~~~~~~~~~

—__
~~~~ , .

version- • ~ ( 

~~~
•

•

Figure 3.1: States of two nested sets.

• Object A
- Object B

Object C
r— ..

Set Sl ___> (r-.. . • •

• (from set S2 > (r~~~~~~~~~~~~~~~~~~~~~~~)

Current version ._.
~~
. (‘ • —

Figure 3.2: Exiting an inner set.

action performe d through S2. The correct use of sets would require that further

accesses to the objects of the set SI be done by entering a new set. Accesses to

these objects should never be donç through Si whose purpose Is to refer to a

previous consistent state.

Noticing that new versions are provided only when the first access is attemp ted, the

objects that an inner set such as S2 holds can be put In such a state that any attempt

to access them triggers the same prpcess as when the outer set is entered for th.

12

________________________ •

f irst time. Hence, the creation of new versions would be provoked and the consistent

state that the inner set holds would be saved.

A similar problem arises when the restoration of an outer set is made. The

consistent states that Inner sets refer to are destroyed. However , one may notice that

the nes ting of the sets reflects the nesting of operations which are to be cancelled

when object restoring occurs at outer levels. Hence, such behavior Is justified by- the

• fac t that the restored outer set had not yet been exited.

I
.

I • •

13

—• •••___________ ~- - —

— —“-•- • -~~- -~ -i---—- — ---•- -~~~ ~~~~~_~
_
~~u-~~~~t_l_ •i - ---— --- —

~~~



~~~~~~~~~~~~ — - - — - - •-- -—--~~~~~~~• - •
_-—•~~

_- •~~
--

~~~-
- • - • -

5. Horizontal Consistenc~j .
Horiz ontal consistency refers to relations between objects. We extend it here to 

£

the case of objects used concurrently by parallel processes. As opposed to

sequentially entered sets , objects whkh belong to sets used by concurrent processes

must exhibit the same version. This leads to conflicts which are known as resulting in

a “domino effect” (Ra75].

Considering our data base again, a transaction Ii may be currently updating the

checking accounts A and B while a transaction 12 is currently updating the checking

• acc ount 8 and C. Rules have been exhibited which allow U and t2 to execute

concurrently and consistentl y (Gr75). However , if some failure in transac tion t i

results in the restoring of A, the data base consistency may require B to be restored

at the same time by restoring the set S1— ~A,B}. As the rest oring of B requires the

restoring of C through the set S2— (8 ,C} declared by the transac tion 12, this leads

eventually to a snow-ball effect where the transitive closure of all intersecting sets

must be taken into account. Moreover, as the restoring of sets is not necessarily

handled by the processes which hold them, it results in processes backing-up. This

can lead to take Into account even non intersecting sets.

Figure 4 exemp lifies this where squares exhibit the relations between processes.

Should process 4 fail at the point X, then the set of process 3 should be restored. Rut

at the considered lime process 3 was interacting with process 2 through Intersecting

sets , and so the same procedure must be repeated with process 2 and then with

• process 1. Issues related to recovery requirements have been analyzed In (Ra75].

- 
Processes must cooperate In providing the necessary recovery structure (referred

to as a “conversation”). While in our example transaction t i was concerned with the

_______- - — • • ——~~~~~~-~~~~~~~~~~r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - 

• 

-•



• - _

Process 1 Process 2 Process 3 Process 4 

1. -. 
time

Figure 4: Conversations between concurrent processes.

i.t S1” (A ,B} and transaction t2 with S2s {B ,C~, the real rec overy structure is formed of

S”Union(Si,S2). The set S cannot be formed merely by merging Si and S2; the

involved processes must have agreed in the definition of the recovery structure and

this structure must be common to the set of processes. Theref ore, we will distinguish

between convers ations and usual recovery structures.

When an enter operation is attempted on a set which intersects w ith a set that

another process is using, the entering of this set is refused and the operation fails.

For this purpose, when a set is entered it is stamped with the process identification;

such a stamp is removed when it is exited. Conversations require that the set which

covers all the involved objects be previously entered. The entering of a conversation

by a process declares at the same time the recovery point (exactly as the enter

operation did for other recovery struc tures) and the conversation It refers to. For

this purpose a new operation Is introduced: ~ $ ~j~jg~ Si where S Is the covering set

while SI is th, subset used by the process. Th, set Si is linked to the set S and to its

other subsets. The restore Si operation triggers the restoring of S.

— ~~~~~~~~~~~~~~~~~~~~~~~ _______________



h enc e, in our data base example cac h transaction would be written:

- .L~~S enter Si s

transac t ion boclW t l~

Notice that when a restoration is performed, Only the ac ting process controls its

- • rec overy action. Other processes are to be backed up in order to execute again.

Therefore, the point where these processes are to be backed up must be defined for

each of them. This point is the instruction which follows the in operation they

executed. Such a back-up point can be saved in their subset when they execute the j~

operation.

The 
~~

j  operation, as we previously defined it , declares a se t to be consistent. In

the case of a conversation such declaration must be extended to the covering set.

Therefore the exit operation is really performed when alt the subsets have been

exited.

Finally, as mentioned earlier , the spreading of recovery ac tions may affect

processe s which were not cooperating through intersecting sets. The same remarks as

above apply and we require all conversations to be nested so that recovery actions

can be defined without side effects. Hence, once an ~ operation has been performed

by a process any other ~ operation it perf orms must refer to a subset that It has

already entered as a covering set. •

16



j
6. Imp ’ementation.

The crea tion of a consistency-set takes a list of objects as an argument and returns

a capab ility for the created set. When newly created , a consistency-set does not refer 
-

to any consistent state since it has not yet been stamped with a clock-time.

When a set is entered, the objec ts it contains should be saved. But notice that they •

are likely not to be in core. Therefore , instead of making a copy of them on1~econdary

storage their representation is brought into core and declared as the new version,

then space on secondary storage is provided for it. When the object represent ation is

already in core, it is considered as t he new one and is swapped out so as to update

t he previous version on secondary memory. Hence, crea ting a new version for an

objec t only ~requires secondary storage space allocation.

• Remember that a capability identifies a unique descriptor of each object , and t hat

t his descriptor contains the identification of the object representation (in terms of

• addresses). What the object descriptor refers to is the current representation. It is

the head of a list of all the object versions. Thus, restoring the previous state of an

• object consists in substituting the necessary links. Providing that a tag field is present

in the object descrip tors for this purpose, the loading of object representations can be

postponed until their real use. Hence, when a se t is entered, the swapping of the

objects’ curr ent versions on to the secondary storage is triggered by the kernel, and a

• load tag is set In the descriptors so as to provoke the creation of a new version when

they are accessed for the first lime. The creation of these new versions will provoke

the descriptors to be stamped with the current clock-time so as to permit their

Identification.

According to the object model, when a new object version is created only Its “true”

) 
~~



•- •- ——
~~~
-- -- - --- - -

~~~~ 
• ---••-

_____ Object descri ptor

saved consistent st ates

Current ropres4ntation

Figure 5: Saving the state of an objec t.

components need to be provided with a new current version. Only t he first level of

the object structure is considered; it is a capabi lity-list. This capabilit y—lis t contains

the identifica tion of its true components which themselves hold the identification of

the r own true components and so forth down to the primitive levels. Those

components can be described in the object structure by a consistency-set. The

representations of the lower level components are not directly copied except when an

• access is required since we only need to keep track of the modifications. Providing

that the load tag of an object is on, when the new version of this object is created, the

kernel can then enter Its consistency-set and trigger the creation of new versions for

its components in the same way as for other objects. New versions will thus be

created recursively for all components down to the primitiv, level. Hence, the only •

18 
-

~~~~~~~ ~~~~~~~~~~~ • - - ~~
-
~~~~~

-
~~~~~

-
~~

-
~~~~

- —
~~

• —--a---- L _
~~ -- -- —--



• I

representations which are copied by the kernel are capal,ilit y-Hsts , and w hen the

lowes t level of the structure is reached, segments.

In addition, object descriptors are provided with a process field that the enter

operation checks. Recall that the entering of a set which intersects with an already

entered set can only be macfe within the same process. Therefore when an enter

• opera tion is performed, each descriptor is stamped wit h the acting process

identification. if the process field is already f i l led , its contents should match the

• executing process identifica tion; otherwise it could only be entered by an ~ operation.

The j~ operation only requires the declared subset to be included in the covering set;

t he subset is then linked to the covering set and to any other subsets that have been

entered already. 
.

When a se t is exited, all the above information is removed. In addition the clock

field of the se t descrip tor is updated so as to now refer to the most recent object

versions. Therefore , the free use of these most recent versions without entering a set

should be avoided since it would destroy a consistent state. For this purpose, when a

set is exited , its object descri ptors are initialized so as to tri gger the creation of a

new version when an attem pt is made to access the corresponding objects. Multiple

copies that such a mechanism might imply can be avoided easily by use of the modif y

tag usually provided in each objec t descr iptor for the purpose of memory management.

Hence, when a set is entered, the creat ion of new versions will not occur for objects

w hose representation was not altered.

Although it may look quite complicated at first glance, the management of

consistency-sets is rather simple sii~ce it covers most of the usual actions of the

• virtual memory manager. However, it does use more space on secondary storage than

~ 

_______ ~~~~~~~~~~~~~~~~



a conventional virtual memory. We would like to point out that a garbage collection is

any caco necessary. Therefore, t he secondary storage can he cleaned up by collecting

.the space of versions which are no longer referred to by a set. Each time a set is

s tamped with a clock time the previous value of its clock field defines objec t versions

w hich are no longer usable. However , since the clock time of an objec t does not

neces&aril y ma!ch the clock time of some se t , care is needed. Given an objec t version,

a count of the number of sets which refer to it should suffice to determine whether or

not the space that this version uses can be collected.

20 
.

— - - • - 
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~


7. Conclusion.

Current recovery techniques are limited by the fact that providing redundancy

imp l ies the access to the represent a tion of objects. Therefore , only local redundancy

can be provided, and recovery is eitlter limited to errors detected at tower levels, or

implies constructing audit trial s so that actions can he undone. The resulting

techn iques involve careful design of the recovery actions and consequently are more

l ikely to be reserved to the implementation of the lower levels of a -~system.

Consistency-sets, on the other hand, seem to provide a robust and simp le mechanism.

By relying directly on the kernel of the system , they should also be more re l iable than

techniques which require more programming assistance.

Although it was beyond the scope of this pape~r to discuss the implementation of

such a mechanism in detail, we have outlined it in order to show that the imp lied

overhead should be small; providing a new version of an object representation usually

requires only secondary storage space allocation. Moreover , explici t redundancy and

consislency checks at the object level should be partly avoided since an old version

can always be retrieved. A copy operation which can be implemented on the same

basis as the creation of a new version f~~r an object allows access to such information .

The main problem that such a mechanism raises is increased secondary storage

V requirements and the collecting of the memory space used by non-accessible object

representations. The saving of space on secondary storage can be included with fail

V
sate facilities where old versions would be periodically archived. However , the

problem of retrieving non-usable versions of objects remains.

-

21

____________ — — ~~~~~~~~~~~~~~~~~~~~~~~ - -, ~~~~~~~~~~

8. References.
V

De76 Dennirig, P.J., Fault Toleran t Operating Systems , Computing Suriicys ,
(December 1976).

Gr75 Gray, JN , PA. Lon e, G.R. Putzolu, I.L. Tr ai ger , Gr~mulari ty 0f Locks And
Dcgrces Of Consistency In A Shared Data Base, IBM Rese arch Report , Ri
1654, (September 1975).

Li76 Linden, l.A., Operating System Structures To Suppor t Security And
Reliable Software , Compu ting Surveys , (December 1976).

LZ74 Liskov , B.H., S. Zilles, Programming With Ab~tr ac t Data Types, SICPLAN
Notices , (A pril 1974) .

Pa7 2 Parnas , D.L., On T h e Criteria To Be Used In Decomposing Systems Into
V

Modutes , C/1CM, (December 1972).

Po78 Pollachc , FVJ., A Design Methodology For Fault Tolerant Sof tware , Ph.D.
Thesis , Carneg ie Mellon University, (1978).

Ra7 5 Randell , B., System Structure For Sof tware Fault Tolerance , IEEE
Transact ions On Software Eng ineering, (June 1975).

SS75 Saltzer , J.H., M.D. Schroeder , The Prolóct ion Of Information In Computer
Systems , Proccccliags Of The IEEE , (Sep tember 1 975).

Wu75 W uf f , W A., Reliable Hardw a re-Software Architecture , SIGPLAN Notices , JO , V

6, (1975).

I

22

_______ •
V 5~~~~~~~~~~~~~~~~~~ : ~~~~~~~~~~~~~~~~~ T.. ~~~V L T - ~~i.iL V ~~~~~~~~~~~~~~~~~~~~~~ ~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
______ V . ~~ V - V .

. . i .~ (. 1 , 4 1 ~~V ,V •~~(. I A ~l T i l l , I— A l -I (Ill...,, I’n i~ . 1

- REPO~I.QOCUMENTATION PAGE
-

IIEI. fl~~~~C I I ~0RM
GOV ACCESSION NO. 3. REClP IENT~S C A T A L O G NUMUER

- o o 6
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4. TITLE e.nd S,,b Il
~

) 5. TY P E OF REPORT & PERIOD COVERED

RECOVERY IN CAPABILITY SYSTEMS Intcrim• — V.— — —~ -T — / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NUMBER

— — ~~~~~~~~~~~~~~~~
C M U — C S— 7 8— 1 2 7

7. AUTHOR (s) 8 _ c NUMBER(S)

- V -
—

-

• ~~ William A ./Wulf a~~ Didier/Lanciaux
V C.i.~- ’ F44620—73—C—0074

9. PERFORMING O R G A N I Z A T I O N NAM E AN D ADDRESS ID. P R O G R A M ELEMENT , P R O J E C T . T A S K
A R WORK UNIT NUM E3ERS

Carnegie—Mellon University (.J~~ / ~!6Department of Computer Sciences 6.J~4-ø4~ A024
Pittsburgh ,__PA 15213 _________________________________

I I . CONTROLLING OFFICE NAME AND ADDRESS
V _1~~~~~~~~~~~~~~~~ T

Def ense Advanced Research Projects Agnecy Jun#” 8~~~)
1400 Wilson Blvd. ~~~ — -1-~~~~~~~~~ë R QJ~~~~~ ES

I. - I

Arlington , VA 22209 24 \~)~~- .: .~~~~~~~ /,~~~
.

14. MONITORING AGENCY NAME & AOORESS(iI d i f f e r e n t f r om ConIroIIin~I Off ice) I S V SECU RI ASS. (o f Ih, ep or t)
Air ~orce Office of Scientific Research/NM

• Boil ing AFB , Washington , DC 20332 UNCLASSIFIED
• IS.. DECLASSIF ICATION V

DOWNGRADING
SC H ED U LE

• 16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; dist ribution unlimited.

17. DISTRIBUTION STATEMENT (of the a b s t r a c t onu.,ed In B lo ck 20 , i f dl f fe , ’en l Ito,., Repo r t ,

18. SUPPLEMENTARY N,~”E&

19 . K E Y WORDS (Con l i r , o e- on reee ,se aIde if n e c e s s a r y and I de n t i fy by b lo ck num b er)

20 TRACT (Contlnoe on resets , s i de If n e cesa . r y end i d e n t i f y by bl ock n,, mben ’

~~letliodologie s and checking techni ques have been proposed to improve software
reliability. It has also been argued that capability mechanisms are the natura
support for these techni ques because they enhance modular decomposition and
infor lnat ion hiding .

However , there is a conflict between these obsErvations; modular decompositi n
limits the possible recovery actions to the ir~forrnation that a module can

access directly. Each module ~ Vst rel y upon the reliability of those that it
uses. ~~(Continued on back oaee~

—

DD 1 J A N 73 1473 UNCLASSIFIED
~~~~~~~~ Q~~ j5Ec URIrY  C L A S S I F I C A T I O N  QF THI S PAGE (I*9I5n Dat. Ent.n.d)

- ~~~~~~~~~ - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



TV  
V

~~~~~~~~~
.; T Y C L A 4 $ I . CATION OF T H I S P A G C(W h .n Date Vf lter•V ,)

20. Abs tract continued .

This paper presents a mechani sm which allows recovery to be managed
at any level in this system while satisf ying the informat ion hidin g apr inci ple. It is based on a save—restore mechanism. In addition ,
p rimitives to udfine consistent states in the system are provided
by the Kernel.

UNCLASSIFIED
S ECU R ITY CL A S S IF ICAT I O N OF THIS PAGE(W7,. n Date EnI.Psd)

• ~~~~~~~~~~~~~~~~~~~~ ___

• V V V V V V V • V • •

